Exploring Fundamental Theorems and Results in Functional Analysis

Triloki_Nath

Important Theorems and Results in Functional Analysis

Theorem 1.1 (Banach Fixed-Point Theorem). Let ( X , d ) ( X , d ) (X,d)(X, d)(X,d) be a complete metric space, and T : X X T : X X T:X rarr XT: X \rightarrow XT:XX a contraction mapping with Lipschitz constant 0 k < 1 0 k < 1 0 <= k < 10 \leq k<10k<1. Then T T TTT has a unique fixed point x X x X x^(**)in Xx^{*} \in XxX such that T ( x ) = x T x = x T(x^(**))=x^(**)T\left(x^{*}\right)=x^{*}T(x)=x.
Theorem 1.2 (Hahn-Banach Theorem). Let X X XXX be a real or complex vector space, and let p : X R p : X R p:X rarrRp: X \rightarrow \mathbb{R}p:XR be a sublinear functional. If M M MMM is a linear subspace of X X XXX, and f : M R f : M R f:M rarrRf: M \rightarrow \mathbb{R}f:MR is a linear functional satisfying f ( x ) p ( x ) f ( x ) p ( x ) f(x) <= p(x)f(x) \leq p(x)f(x)p(x) for all x M x M x in Mx \in MxM, then there exists a linear extension F : X R F : X R F:X rarrRF: X \rightarrow \mathbb{R}F:XR of f f fff such that F ( x ) p ( x ) F ( x ) p ( x ) F(x) <= p(x)F(x) \leq p(x)F(x)p(x) for all x X x X x in Xx \in XxX.
Theorem 1.3 (Uniform Boundedness Principle). Let X X XXX be a Banach space, and let { T α } T α {T_(alpha)}\left\{T_{\alpha}\right\}{Tα} be a family of bounded linear operators from X X XXX to a Banach space Y Y YYY. If sup α T α x < sup α T α x < s u p_(alpha)||T_(alpha)x|| < oo\sup _{\alpha}\left\|T_{\alpha} x\right\|<\inftysupαTαx< for all x X x X x in Xx \in XxX, then sup α T α < sup α T α < s u p_(alpha)||T_(alpha)|| < oo\sup _{\alpha}\left\|T_{\alpha}\right\|<\inftysupαTα<.
Theorem 1.4 (Open Mapping Theorem). Let X X XXX and Y Y YYY be Banach spaces, and let T : X Y T : X Y T:X rarr YT: X \rightarrow YT:XY be a bounded linear operator that is onto (surjective). Then T T TTT maps open sets to open sets, i.e., for any open set U X U X U sub XU \subset XUX, the image T ( U ) T ( U ) T(U)T(U)T(U) is open in Y Y YYY.
Theorem 1.5 (Closed Graph Theorem). Let X X XXX and Y Y YYY be Banach spaces, and let T : X Y T : X Y T:X rarr YT: X \rightarrow YT:XY be a linear operator. If the graph of T T TTT, denoted by Graph ( T ) Graph ( T ) Graph(T)\operatorname{Graph}(T)Graph(T), is closed in X × Y X × Y X xx YX \times YX×Y, then T T TTT is a bounded operator.
Theorem 1.6 (Riesz Representation Theorem). Let H be a Hilbert space. For any bounded linear functional f f fff on H H HHH, there exists a unique vector y H y H y in Hy \in HyH such that f ( x ) = x , y f ( x ) = x , y f(x)=(:x,y:)f(x)=\langle x, y\ranglef(x)=x,y for all x H x H x in Hx \in HxH, where , , (:*,*:)\langle\cdot, \cdot\rangle, denotes the inner product on H H HHH.
Theorem 1.7 (Spectral Theorem for Self-Adjoint Operators). Let H H HHH be a complex Hilbert space, and let T : H H T : H H T:H rarr HT: H \rightarrow HT:HH be a bounded self-adjoint operator. Then there exists an orthonormal basis of H H HHH consisting of eigenvectors of T T TTT, and the corresponding eigenvalues are real.
Theorem 1.8 (Hilbert-Schmidt Theorem). Let H H HHH be a separable Hilbert space, and let T : H H T : H H T:H rarr HT: H \rightarrow HT:HH be a compact self-adjoint operator. Then there exists an orthonormal basis of H H HHH consisting of eigenvectors of T T TTT, and the corresponding eigenvalues converge to zero.

0 Comments